NPS-63-87-008 NAVAL POSTGRADUATE SCHOOL CORRECTION OF THE WIND FIELD MEASURED BY THE NCAR ELECTRA DURING FASINEX FOR INERTIAL NAVIGATION SYSTEM DRIFTS WILLIAM J. SHAW GAIL T. VAUCHER OCTOBER 1987 Approved for public release; distribution unlimited FASINEX Contribution No. 18 Prepared for: National Science Foundation Washington, DC 20550 FedDocs D 208 . 14/2 NPS-63-87-008 NAVAL POSTGRADUATE SCHOOL Monterey, California Rear Admiral R. Austin K. Marshall Superintendent Provost (Acting) The work reported herein was supported in part by the National Science Foundation (Ocean Sciences) with funds provided by Grant OCE-86-03050 . Reproduction of all or part of the report is authorized* This report was prepared by: SfCuQ'^>’ CiASS^^ (!^^)QN ^ PAG^ REPORT DOCUMENTATION PAGE la REPORT SECURITY CLASSmCATlON Unclassified ID RESTRICTIVE markings O > ; ^ r 2a security Classification authority ^0 DECcASSiFiCATlON ; downgrading SCHEDULE i Distribution/ AVAILA8ILITY of report Approved for public release; distribution unlimited Tri * r Ts u - n O <<^i 4 performing ORuAN 2ATION REPORT NJMBER(S) NPS-63-87-008 S MON TORiNG ORGANIZATION REPORT NuM3£R(S/ 65 > > rn -< a> o X o o ca NAVE OF PERFORMING ORGANIZATION Naval Postgraduate School 60 OFE,C£ S'^MBOl (If sppttc^b^e) ’a NAME OF MONITORING ORljANiZ AT lON 63 tx address iC/f> Sfsre, ^nd /IP CoOt) Monterey, CA 93943-5000 'd address (C/fy, Sfjfe, snd /iPCoOt) 5a NAME OF FUNDING / SPONSORING ORGaniZAT.ON National Science Foundation 80 OFFICE symbol (If sppitcsbit) 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER NSF Grant OCE-86-03050 arx3 /IPCcxye) SO'JRC* OF F ;NDING NUMBERS 20550 program PROaECT 'AS< WORK ^'Nir ELEMENT NO NO NO ACCESSION NO (inciuae Security CiaiPfKStion} Correction of the Wind Field Measured by the NCAR Electra During FASINEX for Inertial Navigation System Drifts : PERSONA. aj"mcr(S) william J. Shaw and Gail T. Vaucher ’3 NOTATION - v:osAT. i CODES 18 Subject terms \Connnue on reverse if neceisary ana identity by biocx number) = ElD ’ GROUP SUBGPOUR FASINEX ^ i L Aircraft Meteorological MeasTirements Atmospheric Boundary Layer 9 aBSTRaC'^ {Continue on reveae it nectissry snd Kjtntity by bioctc number) This report describes a technique for removal of inertial navigation system drifts from winds measured by the NCAR Electra during the Frontal Air-Sea Interaction Experiment (FASINEX) in 1986. Without correction, horizontal wind divergences calculated from these data may contain errors as large as 10“^ s“^ resulting from the Schuler oscillation. After correction, the divergence error is reduced by at least an order of magnitude. Correction coefficients and a subroutine to use them were provided for the five of six FASINEX flights for which correction was possible. .'0 D$'Rl3j'0‘. AVAiLABlLiTY O' abstract E • NCiASSif-EO'bNL'MtTEO 0 SAVE AS RPT □ OTiC USERS 21 abstract security CLASSifiCATiON Unclassified .'a ^AVt O' RESRONSlBLE XOiV.OUAl William J. Shaw 22d telephone (oxa Cl M • • VIVO MVU > (M>l)xa M • 7 TiMIMO (SECONDS) These curves are derivatives of the functions presented in Appendix B. The combination of the Schuler oscillation and a longer-term drift yield velocity errors which are typically as large as 3 m s‘ in each component. If one assumes a sinusoidal velocity error of this amplitude in a line integral divergence calculation using uncorrected data collected from a 100 km square box, it can be shown (Appendix F) that the error in the divergence may be as large as 1 x 10’ s~ ^ , This is an order of magnitude larger than typical divergence values encountered in the undisturbed atmosphere. It is sobering to note that because of the oscillatory nature of the position errors, there are times late in each day's flight when the position error is near zero. In the years before the Electra recorded INS -independent position information, it was common to use airport position upon landing as the single (and generally only available) external position reference for a flight. If the position error was small, the conclusion was usually that the INS drift was small and that the wind measurements, therefore, would be acceptably accurate. It is obvious from the data presented in the appendices that this is not a safe assumption. 3.2.3 Uncorrected and corrected wind fields The figures of Appendix D show uncorrected and corrected wind vectors for the FASINEX flights (excluding February 20). These vectors are averages over 100 s intervals of the flight, which correspond to very nearly 10 km in space. Inspection of the figures shows the substantial difference the correction makes. For the flight of February 17, for example, the uncorrected winds are southeasterly with a magnitude as large as 12 m s’ on the northern side of the box. On the south side, winds are nearly easterly and have a magnitude closer to 5 m s' . A vorticity calculation based on these data would result in significant cyclonic vorticity. After correction, the winds still show cyclonic vorticity, but of a smaller value. Maximum windspeeds on the north side of the box are roughly 10 m s’ and minimum windspeed on the south side are closer to 7 m s’"^. Further, the wind vectors on the south side show much less change between the first and the second passes of the aircraft through the center of the center of that area. Uncorrected and corrected wind vector plots for the other FASINEX flights are also contained in Appendix D. Acknowledgments: This work was performed with the support of NSF Grant OCE-86-03050 . Ms. Penny Jones expertly transformed the manuscript into report form. 8 4. REFERENCES Battan, L. J., 1973: Radar Observation of the Atmosphere. Chicago, University of Chicago Press, 324 pp. Bean, B. R. , and E. J. Dutton, 1966: Radio Meteorology. National Bureau of Standards Monograph 92, U, S. Department of Commerce. (Available from U. S. Government Printing Office, Washington, D. C. ) . 435 pp. Broxmeyer, C., 1964: Inertial Navigation Systems. New York, McGraw- Hill, 254 pp. Grossman, R. L. , 1977: A procedure for the correction of biases in winds measured from aircraft. J. Appl . Meteor., 16, 654-658. Lenschow, D. H., and P. Spyers -Duran , 1987: Measurement techniques: Air motion sensing. NCAR Technical Bulletin No. 23, 49 pp. Nicholls, S., 1983: An Observational Study of the Mid-latitude, Marine Atmospheric Boundary Layer, Ph.D. dissertation. University of Southampton, U.K. , 307 pp. Stage, S. A. and R. A. Weller, 1985: The Frontal Air-Sea Interaction Experiment (FASINEX); Part I: Background and scientific objectives. Bull. Am. Meteor. Soc., 66, 1511-1520. and , 1986: The Frontal Air-Sea Interaction Experiment (FASINEX); Part II: Experimental plan. Bull. Am. Meteor. Soc., 67, 16-20. U. S. Coast Guard, 1980: Loran-C User Handbook. Department of Transportation, COMDTINST M16562.3 (old CG-462), 63 pp. 9 A. RAW AND ADJUSTED INS--LORAN POSITION DIFFERENCES This appendix contains plots of the position differences between the INS and the LORAN-C signal which was received by the NCAR Electra. Data are presented in an east-north geographic reference frame so that position differences are independent of flight track. Also included in each set of plots is the aircraft track versus time. Because of discontinuities the data of February 18, a plot of the adjusted data for that day immediately follows the raw data plot. 10 11 TDyE past Oh&'OOII 12 TiyE (h@yrs past OiSCMlil 13 TiyE (hoyrs past @Q)©(0i2) 14 (09p) 5i o « o CO o d o €M O OJ 0 1 o CM Q CM O CM I (Oep) 5<0VUi 12.0 13.0 14.0 1S.0 18.0 17.0 18.0 1S.0 20.0 B. CUBIC SPLINE FITS TO POSITION ERRORS This appendix contains plots of the cubic spline curves fitted to the data of Appendix A. They are plotted on the same scale so that overlays can verify the fits. 18 CUBIC SPUME - tS FEB 88 o AV CM ir- y- CM I I ((UU5fl) XV 19 ^JinainJ ipiX 0 0 ^ 0 fl 0 0 0 91 0 ' 9 l O'fl 0 es. o si 'SO a UJ iUL yy 1 1 c=^ (3k m o m o AV XV 20 12.0 13.0 14 0 1S.0 13.0 17.0 16.0 13 0 lo 0 21 0 22.0 TiPJE flhoyrai past Ot&OOl) GUiflC SFLDINIE ° ii FEIS ea 10.0 0.0 - 10.0 - 20.0 20.0 10.0 0.0 - 10.0 - 20.0 (tULD^^jl AV (UJi^ii) XV i I 21 12.0 13.0 14.0 18.0 1S.0 17.0 16.0 1& 0 2*. 0 21.0 22.0 TiyE {l-uOurs p&sS 0&Ci)yi) 22 12.0 13.0 14.0 16.0 16.0 17.0 16.0 ClliaiC SPLINE = 24 FEB 86 O 23 12.0 13.0 14 0 1b. 0 1S.0 17.0 IS.O U 0 0 21.0 22.0 TiyE past iDiO'OO^) C. VELOCITY ERRORS DERIVED FROM CUBIC SPLINES The curves which follow are the derivatives of the curves presented in Appendix B. 24 25 12.0 13.0 14.0 1S.0 1S.0 17.0 18.0 1S.0 20 0 21.0 22.0 VIELOCITY ERROR - 17 FEB aS 26 12.0 13.0 14 0 Iti.O 13.0 ir.O 18.0 1& 0 111 0 21.0 27 12.0 13.0 14.0 15.0 16.0 17.0 16.0 1^.0 20.0 21 0 22.0 TiyE Oyooi'J VEI.OCITY ERROR - 21 FEB 86 O 28 12.0 13.0 14.0 ISt-O 10.0 17.0 18.0 10 0 0 21 0 29 D. UNCORRECTED AND CORRECTED VELOCITY FIELDS This section contains plots of wind vectors obtained from 100 s averages (approximately 10 km in distance) of the uncorrected and corrected wind data. Scales are identical in both cases to allow for comparison of the vector fields by overlay. Wind vectors are scaled so that 0.1 degrees of latitude or longitude is 10 m s’ of windspeed. Fields are corrected only with respect to ins drifts, other potential errors, such as biases, have not been removed. also, no attempt has been made here to account for non- stationarity of wind field itself. 30 LPTIT'JI'F (Lir'-RCESl LRTnU'JE IDCSRt£SI .'7.7 .''7.8 27.9 28. n 20.1 28.2 28.3 28.1 27.7 ?7.1 27.9 '".S 71.7 27.9 28.0 J8.1 28.2 28. 3 20.1 31 LnTHL'pr lOrGRPESt LPTITUDE (DEGREES! rx 32 LRiiTJor (D'~gr!:e:s) lptitude idegreesi 27. e 2'.9 29.0 23.1 28.2 20.3 28.4 28.5 20.6 27.6 27.7 27.8 27.9 20.0 28.1 20.2 28.3 28. 1 20.5 28.6 28. 1 ,1,1- 'v V \ 1 i \ \ V \ - V \ V V \ \ \ \ \ V V V \ \ \ \ \ \ V \ \ i V \ \ \ \ "■ \ \ \ \ \ '' \ \ ' ' \ ' February 18 Uncorrected winds - \ \ \ \ 1- 1 , ,yv '‘1 V V \ i , i y ^ V \ \ V \ V \ \ \ V \ i V V V \ \ \ V \ V i i V V \ V \ V' V \ V V V \ V V V \ V y V \ Vi, \ V V ^ \ \ X ' \ \ \ ' \ \ \ \ February 18 Corrected winds ^ r~ *70.h-70. b -70.4 -70.3 70.2 -70.; -70. LONG I TUDl U - (DERRi' 1 t ~69.^ bt. b9.J b-b ESI 33 LnTIT'jnr 'LTf^RCCSl LRTITUDf f DEGREES) cn 34 LHiri'P" 'LTPRfC?) LRIITHDC (DEGRCES! 28.0 ->.1 28.2 ,:8. > 28 . •I 23.8 28.6 28. ’ 28.8 28.9 27.8 27.9 28.8 28.1 28.2 28.'-' 28.1 28.5 28.6 28.7 28.8 26.9 35 E. SETS OF SPLINE COEFFICIENTS Following are the sets of spline coefficients for the correction of INS-derived position and horizontal wind velocity components in an east-north coordinate system. These coefficients have been determined for the five (out of six) correctable Electra flights in FASINEX. With the coefficients supplied, the output is in km for position error and in m s" for the velocity errors. E.l Spline Evaluation Subroutine SUBROUTINE SPLINE(XK , C , CINT , N , T , VAL , DER) C C SUBROUTINE TO EVALUATE THE A CUBIC SPLINE AND ITS FIRST C DERIVATIVE AT A PARTICULAR ABSCISSA VALUE T C c XK -- INPUT ARRAY OF N KNOTS FOR THE N SPLINES c SENT TO THIS ROUTINE c c -- INPUT ARRAY OF (3,N) CUBIC SPLINE c COEFFICIENTS c CINT -- INPUT ARRAY OF N SPLINE INTERCEPT VALUES c N -- INPUT NUMBER SETS OF CUBIC SPLINE c COEFFICIENTS IN FUNC c T -- INPUT ABSCISSA (E.G. TIME) VALUE AT WHICH c THE CUBIC SPLINE FUNCTION AND ITS c FIRST DERIVATIVE ARE TO BE c EVALUATED (IN SECS) c VAL -- OUTPUT VALUE OF SPLINE AT TIME T (IN KM) c DER -- OUTPUT VALUE OF FIRST DERIVATIVE AT TIME T c (IN M/SEC) C DIMENSION XK(1) ,C(3,N) ,CINT(1) C DO 10 1=1, N IF(XK(I) .GT.T) GO TO 20 10 CONTINUE C 20 IF(I.GT.l) GO TO 30 VAL = -9999. DER = -9999. RETURN C 30 I = I-l D =(T - XK(D) / 1000 VAL = CINT(N) + D*(C(1,N) + D^(C(2,N) + D*C(3,N))) DER = D*(2*C(2,N) + D*3*C(3,N)) + C(1,N) RETURN END 36 E.2 Spline Coefficients February 16 - DELTA X COEF: XK (SECS PAST OOOOZ) CINT C(1,N) C(2,N) C(3,N) 48535 0.005 -0.996 -0.256 0.087 50065 -1.804 -1.165 0.145 0.088 51360 -2.878 -0.345 0.488 -0.288 52889 -3.297 -0.877 -0.835 0.238 54966 -6.592 -1.273 0 . 644 0.040 56638 -6.731 1.219 0.846 -0.414 57714 -4.957 1.603 -0.489 -0.177 59242 -4.284 -1.138 -1.303 0.920 59750 -5.075 -1.749 0.096 0.135 62074 -6.919 0.895 1.041 -0.455 63858 -4.590 0.270 -1.391 0.342 65393 -6.218 -1.585 0.183 0.175 67162 -7.482 0.703 1.111 -0.424 69063 -5.044 0.328 -1.308 0.307 71634 -7.633 -0.317 1.057 -0.269 XK (SECS PAST OOOOZ) February CINT 16 - DELTA Y COEF; C(1,N) C(2,N) C(3,N) 48535 1.381 0.909 -0.436 0.105 50270 2.193 0.342 0.108 0.083 52003 3.541 1.463 0.539 -0.192 53736 6.697 1.602 -0.459 -0.273 54852 7.534 -0.441 -1.372 0.484 55902 6.117 -1.721 0.155 0.115 58442 4.625 1.286 1.029 -1.095 59141 5.652 1.122 -1.264 0.192 62533 2.406 -0.825 0.690 -0.106 64180 2 . 446 0.586 0.167 -1.168 64602 2.635 0.103 -1.312 0.447 65673 1.789 -1.170 0.124 -0.013 69973 -2.000 -0.839 -0.047 -0.035 37 February 17 - DELTA X COEF: XK CINT C(1,N) C(2.N) C(3,N) (SECS PAST OOOOZ) 49800 -0.347 1.479 -2.212 0.474 51419 -1.737 -1.957 0.088 0.209 53037 -3.790 -0.034 1.101 -0.511 54656 -3.130 -0.488 -1.381 0.270 56145 -6.029 -2.807 -0.175 0.804 56981 -8.028 -1.415 1.841 -0.365 58673 -6.918 1.681 -0.013 -0.530 60014 -5.965 -1.213 -2.145 0.706 62294 -11.506 0.024 2.687 -0.797 64429 -6.964 0.600 -2.417 0.521 66725 -12.026 -2.265 1.169 -0.006 68046 -12.990 0.795 1.147 -0.472 69936 -10.576 0.070 -1.530 0.176 70839 -11.630 -2.262 -1.053 0.655 71944 -14.531 -2.191 1.117 -0.168 February 17 - DELTA Y COEF; XK CINT C(1,N) C(2,N) SECS PAST OOOOZ) C(3.N) 49800 0 ,322 -0. .028 0, .158 -0. .003 51419 0, .677 0. .457 0, .141 -0. .091 53037 1, .399 0. .197 -0, .302 0. .145 55151 1, .837 0. .867 0 .619 -0. .374 56065 2, .861 1. ,061 -0. .406 -0. .048 57884 3, ,159 -0. .892 -0 ,668 0. .368 59671 1, .531 0. .245 1 .304 -0. .436 61641 3 .742 0. ,306 -1 .274 0. .065 62514 3, ,082 -1. .768 -1. .103 0. .588 64320 -0, .247 0, .001 2. .082 -0. .639 66166 2, .832 1, .160 -1. .455 0. ,014 67705 1, .224 -3, .217 -1, .390 1. .015 69102 -3, .219 -1. .158 2, ,864 -0. .653 71819 1, .676 -0, .060 -2. .460 0. .564 74787 -5, ,431 0. .234 2. ,559 -0. .828 38 February 18 - DELTA X COEF: XK CINT (SECS PAST OOOOZ) C(l.N) C(2,N) C(3,N) 50582 -0, .125 -0 .869 -0. .735 0 .146 51884 -2. .182 -2. .041 -0. .165 0. .309 53188 -4, .438 -0. .900 1. .041 -0. .293 54490 -4. .493 0. .319 -0. .105 -0. .215 55154 -4, .391 -0. .105 -0. .533 0. .028 56988 -6, .206 -1. .781 -0. .381 0. .605 57876 -7, .664 -1. .028 1. .229 -0. .426 58591 -7, .926 0. .077 0. .315 -0. .162 60973 -8, .143 -1. . 178 -0. .842 0. .506 62600 -10. .108 0. .098 1 .627 -0 .399 63843 -8. .240 2. .290 0. .136 -2. .161 64121 -7. .638 1. .864 -1. .670 0. .196 65781 -8. .245 -2. .055 -0. .692 0 .324 68059 -12. .690 -0 .161 1. .523 -0. .469 70229 -10. .666 -0. .178 -1. .531 0 .318 February 18 - DELTA Y COEF: XK CINT C(1,N) C(2,N) (SECS PAST OOOOZ) C(3,N) 50582 0. .274 -0. ,209 -0, ,342 0. .262 51884 0. .002 0. ,235 0, ,682 -0. .004 53188 1. .454 1. ,989 0. ,665 -0, .973 53968 2. .950 1. ,246 -1. ,615 0. .456 54796 3. .134 -0. ,490 -0. .485 0. .229 56723 2. .028 0. 195 0. .840 -0. .410 57391 2. .412 0. .769 0. .019 -0, .079 60488 2. .641 -1. .374 -0. .711 0. .792 61072 1. .754 -1. .394 0. .676 -0. .199 62654 0 .453 -0. .748 -0. .268 1. .406 63182 0. .190 0. .140 1. .955 -1. .201 63748 0. .678 1. .198 -0. .088 -0 .199 65604 1 .329 -1. .182 -1 ,195 0, .917 66492 -0 .022 -1. .136 1 .248 -0 .252 69352 1 .033 -0, .189 -0, ,917 0 ,230 39 February 21 - DELTA X COEF: XK CINT (SECS PAST OOOOZ) C(l.N) C(2,N) C(3,N) 50652 -0. .584 0 .227 -1. .965 0, ,577 52188 -2. .775 -1 .724 0. .693 -0. .003 53722 -3, .797 0, . 387 0. .682 -0. 360 55513 -2. .983 -0 ,631 -1, .250 0. .250 56791 -5. .311 -2, ,601 -0. .291 1, ,685 57244 -6. .391 -1, .830 1. .996 -0. 501 59223 -6. .076 0, .188 -0. .976 0, ,271 60205 -6. ,577 -0, ,946 -0. ,178 0. 105 63227 -8. ,175 0 .845 0. .770 -1, .014 64044 -7, .524 0 ,078 -1. .710 0. ,895 64707 -7. .964 -1, .009 0. .073 0. .044 66845 -9. ,358 -0 .097 0, .353 -0. .180 68873 -9, ,604 -0, ,887 -0 .743 0. .220 71639 -13. ,081 0, .058 1, .084 -0. .368 73796 -11. ,610 -0 .404 -1. ,298 0. .379 February 21 - DELTA Y COEF: XK CINT C(1,N) C(2,N) (SECS PAST OOOOZ) C(3,N) 50652 0, ,914 -1. ,338 0, .883 -0. .116 52188 0. ,521 0, ,553 0, ,349 -0. .116 53873 1. .888 0. ,740 -0, ,237 -0. .038 55257 2. ,357 -0. 136 -0, .396 0. .262 56005 2. ,143 -0. ,288 0, .193 -0. .008 58727 2. ,639 0, 596 0, .132 -0. .252 60339 2. .887 -0. ,942 -1, ,086 0. .596 61421 1. ,352 -1. ,197 0, .850 -0. .067 63037 1. ,355 1, 026 0, .525 -0, .576 64378 2. .288 -0. 668 -1, .789 0, .710 65845 -0. ,302 -1. ,333 1, .336 -0. .210 67731 0. ,527 1. ,463 0 ,146 -0. .362 69089 1. .875 -0. ,145 -1, .331 0. .397 71018 -0. ,505 -0. ,845 0, .968 -0, .196 74402 0, ,144 -1. Oil -1, .017 0. .409 40 February 24 - DELTA X COEF: XK CINT (SECS PAST OOOOZ) C(1,N) C(2.N) C(3,N) 45404 -0, .714 1. ,912 -1. .624 0. .248 46809 -0. .549 -1. .186 -0. ,579 0. .247 48216 -2, .673 -1. ,347 0, .464 0. .191 49621 -3. .117 1. .094 1. .272 -0. .806 50768 -1. .406 0. ,832 -1. .500 0, ,203 52434 -3. .243 -2, .473 -0. .484 0. 770 52815 -4, .213 -2. .506 0. ,397 0, .125 55223 -6. .203 1. .578 1. .300 -0. .687 56360 -3. .734 1. ,869 -1. .045 -0. .171 57839 -3. .806 -2. .340 -1. ,804 0. ,990 59085 -7. .610 -2. .220 1. .899 -0. .089 59977 -8. .143 0, ,954 1. .660 -0. .548 61703 -4. .369 1. .791 -1. .175 -0. ,158 63074 -4. 531 -2. ,326 -1. .826 1. .326 63882 -6, .905 -2, ,678 1. .391 -0. .076 66634 -5. ,317 3. ,259 0. .767 -6. .039 66817 -4. ,732 2. ,933 -2. ,549 0. ,373 February 24 - DELTA Y COEF: XK CINT C(1,N) C(2,N) (SECS PAST OOOOZ) C(3.N) 45404 0. .539 -1. ,279 2. ,188 -0. ,591 46975 1. ,637 1. .216 -0. 600 0. .069 48546 2. .333 -0. .159 -0. .275 0. ,097 49718 1. .925 -0. .403 0, .067 0, .085 51751 2, .100 0. .926 0. .587 -0, .298 53382 3. 878 0. .464 -0. .870 0. .122 54768 3. .177 -1. .243 -0. ,362 0. .213 57005 0. .968 0. ,336 1 . .066 -0, ,082 57837 1. .937 1. .938 0. 860 -0. .796 59184 4, .162 -0. .082 -2, .359 0. .649 61384 -0. ,530 -1. .043 1. ,923 -0. .373 63128 1, .522 2. .263 -0, .026 -0, ,471 64927 2. ,7/0 -2. ,397 -2. .565 1. .218 66457 -2. .541 -1, .682 3. .031 -0. .701 69029 1. .255 -0. ,003 -2. .378 0. .407 41 F. DIVERGENCE ERROR FROM THE SCHULER OSCILLATION It is useful to consider what error an 84.4-min sinusoidal oscillation may induce in a line integral calculation of the horizontal divergence. The divergence is expressed as where V is the horizontal wind vector, n is a unit vector normal to the flight track, and dl is an increment of distance along the track. For simplicity, we restrict our flight geometry to a square box with a perimeter of length C which is flown counterclockwise at a constant groundspeed S beginning at the southeastern corner. We further assume that the box sides are oriented east-west and north-south and that the earth's curvature may be neglected. Considering only the error in the east component of velocity, we may represent the oscillation as (F.l) TT • / 27T t . . = a sin(— + 4 >) (F.2) where a is the amplitude, T is 84.4 min, and ^ is an arbitrary phase. Noting that contributions to the integral from the east component of the error come only from the north- south legs and that dl = S dt, we may write C/4S C/S € u -► -► = V • u =x USdt-^ USdt € A € A € (F.3) 0 3C/4S C/4S C/S [cos(^ + 4 >) - cos(^ + 4 >) ] 0 3C/4S = ^ cos(B+i^) - cos(3B/4+^) - cos(B/4+<^)] 42 where B = 27 tC/ST. Since the error depends on the random phase at the beginning of the box, we determine the maximum divergence error by maximizing the error with respect to as follows. (F.3) may be rewritten a ST ™ 27tA ^ cosBcos(^ - sinBsin(^ - cos( 3B/4)cos(^ + sin(3B/4)sin<^ - cos(B/4)cos<^ + sin(B/4)sin(^ + cos(^] (F.4) To maximize the error, 0 d4> aST r L -cosBsin<^ - sinBcos^ + cos( 3B/4) sin(^ + sin(3B/4)cos<^ + cos(B/4) sin<^ + sin(B/4)cos<^ - sin-^ ] (F.5) This is true if the argument in square brackets is zero. A little rearranging yields tan<^ [ sin(-B) -I- sin(3B/4) + sin(B/4) ] t c^osB ccT^ cos(B/4) + 1 ] For C * 400 km, S = 100 m s and T = 84.4 min. 4> = 0.66 rad (or 37.82") Substituting these values into F.4 yields €„ = 5.4 X 10'^ s'^ (F.6) This error is additive with the contribution to the divergence from the error in the north component of velocity. Therefore, the error in the divergence could be as large as 10" s' . The position difference data quality appears high enough to expect an effective reduction of at least an order of magnitude in the Schuler amplitude a. As a result, the error in divergence due to the INS drifts after correction should be no more than 10’^ s' . 43 icsA - Distribution List No. of Copies Dr. Robert F. Abbey 1 Office of Naval Research 800 N. Quincy Street Arlington, VA 22217 Dr. Joost Businger 1 NCAR P. 0. Box 3000 Boulder, CO 80307 Dr. Kenneth Davidson 1 Department of Meteorology Code 63Ds Naval Postgraduate School Monterey, CA 93943-5000 Dr. Carl Friehe 2 Mechanical Engineering University of California, Irvine Irvine, CA 92717 Dr. Gary K. Greenhut 1 NOAA/ERL R/E2 325 Broadway Boulder, CO 80303 Dr . Howard Hanson 1 CIRES P. 0. Box 449 Boulder, CO 80309 Dr. Warren Johnson 1 NCAR P. 0. Box 3000 Boulder, CO 80307 Dr. Siri Jodha Singh Khalsa 1 CIRES P. 0. Box 449 Boulder, CO 80309 Dr. Bill Large 1 NCAR P. 0. Box 3000 Boulder, CO 80307 Dr. Don Lenschow 1 NCAR P. 0. Box 3000 Boulder, CO 80307 1 Dr. F. K. Li Jet Propulsion Laboratory MS 183-701 4800 Oak Grove Drive Pasadena, CA 91109 Dr. William Plant Code 7913S Naval Research Laboratory Washington, DC 20375 Dr. Robert J. Renard, Chairman Department of Meteorology, Code 63Rd Naval Postgraduate School Monterey, CA 93943-5000 Dr. William J. Shaw Department of Meteorology, Code 63Sr Naval Postgraduate School Monterey, CA 93943-5000 Dr. Steve Stage Department of Meteorology Florida State University Tallahassee, FL 32301 Dr. Robert A. Weller Woods Hole Oceanographic Institution Woods Hole, MA 02543 Library, Code 0142 Naval Postgraduate School Monterey, CA 93943-5000 Research Administration, Code 012 Naval Postgraduate School Monterey, CA 93943-5000 Defense Technical Information Center Cameron Station Alexandria, VA 22304-6145 1 1 12 2 1 2 1 2 National Science Foundation Washington, DC 20550 1 DUDLEY KNOX LIBRARY I iiiiiiMii hill iiiiiiii iiih; ill I mil 3 2768 00338339 9