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is constant along the curve, where k and t denote the curvature and the torsion, respectively [12].
The slant helix is the curve such that the normal line makes a constant angle with a fixed straight line which is called the axis of the slant helix [13]. Izumiya and Takeuchi [13] proved that: A curve is a slant helix if and only if the geodesic curvature of the principal image of the principal normal indicatrix
(k2 + t2)3/2 w
©'
is constant along the curve.
The determining of the position vector of some different curves according to the intrinsic equations k = k(s) and t = t(s) (where k and t are the curvature and torsion of the curve) is considered as a one of important subjects. Recently, the parametric representation of general helices and slant helices as an important special curves in Euclidean space E3 are deduced by Ali [14,15].
Ruled surfaces are surfaces which are generated by moving a straight line continuously in the space and are one of the most important topics of differential geometry [16]. In this paper, we investigate a family of ruled surfaces generated by some special curves in Euclidean 3-space E3 and we obtained some important results in the case of general helices and slant helices as a base curve of this ruled surfaces.
2. Basic concepts
If ||J7(A)|| = 0, then the ruled surface does not have any striction curve. In this case the ruled surface is cylindrical. Thus the base curve can take as a striction curve.
The standard unit normal vector field U on a surface W can be defined by:
V, A*FV
y,A?pvir
(4)
where Ws = and = dwMm The first / and second II
J os v ov
fundamental forms of the surface W are given by, respectively
I = Eds2 + 2Fdsdv + Gdv2,
II = eds2 + Ifdsdv + gdv2.
(5)
(6)
where
E={WS,WS), F=(WS,WV), G = {WV,WV), e = (^SS,U), f=(Wsv,U), g={Wvv,U).
On the other hand, the Gaussian curvature K, the mean curvature H and the distribution parameter 2 are given by, respectively [18]
K = H = 2
eg~f
EG -F2
Eg+ Ge- 2 Ff
2{EG - F2) det(c',X,V)
||V||2
(7)
(8) (9)
Let E3 be a 3-dimensional Euclidean space provided with the metric given by
(,) dx i T dx 2 T dx
where (v1? x2, x3) is a rectangular coordinate system of E3. Let c = c(s) :/C^E3 is an arbitrary curve of arc-length parameter s. Let (ei(j), e2(j), e3(s)} be the moving Frenet frame along c, then the Frenet formulae is given by [12]
<(© | o o | 'ei(s)' | ||
e2©) | k(s) 0 T (s) | e2(s) | ||
.e((5). | 1 0 1 H O | _e3(©_ |
where the functions k(s) and t(s) are the curvature and the torsion of the curve c, respectively.
A ruled surface is generated by a one-parameter family of straight lines and it possesses a parametric representation
T(s,v)=c(s) + vX(s), (2)
where c(s) is called the base curve and X(s) is the unit represents a space curve which representing the direction of straight line [17].
If there exists a common perpendicular to two constructive rulings in the ruled surface, then the foot of the common perpendicular on the main rulings is called a central point. The locus of the central point is called striction curve [4]. The parametrization of the striction curve on the ruled surface (2) is given by
ii*'(©n2
X(s).
(3)
From Brioschis formula in a Euclidean 3-space, we are able to compute Kn of a surface by replacing the components of the first fundamental form E, F and G by the components of the second fundamental form e, f and g respectively. Consequently, the second Gaussian curvature Kn of a surface is defined by [19]:
K n =
(eg-ff
f | 2^vvEfsv 2^s Cs 2^v | 0 \ev | 2 £s | 1 | |
fv-\gs e f | ~ | \ey e | f | ||
l | \g, f g | \gs f | g | l |
(10)
Having in mind the usual technique for computing the second mean curvature Hn by using the normal variation of the area functional for the surfaces in E3 one gets [20]:
Hn = H + fn\n{K)
where H and K denote the mean, respectively Gaussian curvatures of surface and A n is the Laplacian for functions computed with respect to the second fundamental form II as metric. The second mean curvature Hn can be equivalently expressed as
Hn = H +
1 ^ d
ydet(//)^ (lnv7^) out
(11)
where (hf) denotes the associated matrix with its inverse (hij), the indices ij belong to {1,2} and the parameters u1, u2 are s, v respectively.
The geodesic curvature, the normal curvature and the geodesic torsion which associate the curve c(s) on the surface W can be computed as follows:
Kg (U A ei, e1),
Kn=( C",U),
c(s) = c (s)
K,
Tj = (U A U', e'j). (12)
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Now, we can write the following important definitions:
Definition 2.1 [21]. For a curve c(s) lying on a surface, the following are well-known:
(1) c(s) is a geodesic curve if and only if the geodesic curvature Kg vanishes.
(2) c(s) is an asymptotic line if and only if the normal curvature k vanishes.
(3) c(s) is a principal line if and only if the geodesic torsion Tg vanishes.
Definition 2.2 [22].
(1) A regular surface is flat (developable) if and only if its Gaussian curvature vanishes identically.
(2) A regular surface for which the mean curvature vanishes identically is called a minimal surface.
(3) A surface is called Il-flat if the second Gaussian curvature vanishes identically.
(4) A surface is called Il-minimal if the second mean curvature vanishes identically.
Making use of the data described above, the Gaussian curvature K, the mean curvature H and the distribution parameter 2 are given respectively, by
/
K=- J ,,
E-F2
^-2Fj_
2(E-F2)
r(x2 + X2) KX1X3 xI(k2 + T2) + (x\K X3T)2
(18)
(19)
(20)
Also, from (10) the second Gaussian curvature of W is given as follows:
f(evv - 2/J - [ey - 2fs)fv =\ d (ev - 2/A
2f 2fdv{ f y
(21)
From (18)(21) and (11), at the point (s, 0), we have the following results respectively
K = H =
x3x3 x2 + x2
X3(l 2x\)k + 2x\ (x2 + X2)l 2{x\ + x2)3/2
(22)
(23)
It is worth noting that the ruled surfaces (2) is developable if and only if the distribution parameter 2 of the surface W vanishes identically [23].
3. Some characterizations of ruled surfaces in general form
For our study, we consider the following generated surface using a curve c(s) as a base curve:
S: V(s,v) = c(s) + v X(s), J^(j)^0, v e R, (13)
where
3
-Vs) = EXi 04)
/= 1
is a unit vector with fixed components, i.e., x2 4~ x\ + x2 = 1. The natural frame {Ws, Wv} of (13)is given by:
f Ws m (1 - vx2x)ei + v(xi k - x3r)e2 + (vx2r)e3, l Wv = xxe{ + x2e2 + x3e3.
From the above equation, we can obtain the components of the first and second fundamental forms of W, respectively, as the following:
{E = (1 vx2k)2 + v2(xix x3t)2 + (vx2t)2,
F=x 1, (16)
G= 1,
e = A KT1) X] (x\ -l-Xg)!3 ^3(1 3x2)kT2 X\ (1 3x\)k2x
X3 (x\ +X2)k:3] v2 + [2X2(X3K + Xiz)k XiX3K' + (X2 +X3)Vj v X3?cj , f=j[(xl+xf)T:-XiX3K\,
,g = 0,
(17)
where
A2 = [(x2 + x2)x2 2x\X3kt + (x^ + x2) t2] v2 2 x2kv +;
+ V2.
2^Jx\ + v2 |^XiX3k: (x2 + x2)2tJ
X [2xi (*2 + V2) [3X\X3K (x^ + X2)t] T2 + K2
X ^x3 |x2 (x2 + 2C2)2 xf (x2 2x2) j K
Tx2 (X2 + x2) Q ^ + (x2 + x2) (2xi [x2(x2 - 3x2)
+ x2(x2 + 7C2)]/C2 X2(x^ + xI)k')t + xix2x3 (x2 + x2) kk'] , (24)
2(X2 +X2)3^2 jxiX3fC (x2 +X2)2tJ x [x2x3(x2 + x2)k:[x2k:/ 4x3xt]
+ XjX3 (x2 X2) K3 X\ (x2 + X2) 2 (2X2T3 + 2x2t(t2 K2)
x2x3kk') x2 (x2 + x2)x(x3 [(2x2 + x2)x2 5(x2 +x2)t2] +x2(x2 + x2)t') (x2 + x2)2k(x3 [x2T2 + X2(x2 + t2)]
+x2(x2 + x2)t')]. (25)
Furthermore, we will use (12) to get the geodesic curvature, the normal curvature and the geodesic torsion which associate the curve c(s) on the surface W as the following forms, respectively:
Kg = ~A ^2 _ + X2)k xix3r] v], (26)
Kn = -X2(x3/c + xit)v], (27)
Tg =~2 \X2X3K2 v(x3(x2 + 2x\)k3 + X\ (x2 2x2)/c2t
+X3 (x2 + x2) KT2 + X2 (x2 + x2) 7C2 (^j
+X2 [(X2 + X2)t XiX3x] k'k') + X2V2((x3/C + Xit)
X K \x22(k2 + T2) + (xik x3r)2j + x2k3 (^j ^ j . (28)
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At the point (s; 0), above equations take the simple form:
x2k
VxfTxf
Kn
X3 K
Te =
X2X3K
a/*2 + X\
Then we have the following properties:
x2 + x\'
KgKn = T g, K2g + K2n = K2.
(29)
(30)
From (14) and (1), it is easy to see that the parametrization of the striction curve on the ruled surface (13) is defined by:
c(s) = c(j) + 2^(.y)
(31)
irair
From the above study, one can formulate the following corollaries:
Corollary 3.1. At the point (s, 0), the ruled surface (\3) is a flat surface if and only if the curve c(s) is a general helix with
i{s) *1*3
k(s) *2+x2*
Corollary 3.2. At the point (s,0), the ruled surface (13) is a minimal surface if and only if the curve c(s) is a general helix
with m
K\s) 2xi(x^+x^)
In the following we will compute the Gaussian curvature K, the mean curvature H, the second Gaussian curvature Kn, the second mean curvature Hn as well as the geodesic curvature Kg, the normal curvature Kn, and the geodesic torsion zg in a special cases, respectively.
Case 3.1. At x\ = 0, the ruled surface (13) has the following:
Corollary 3.4. At the point (s,0), in the ruled surface (\3) with x2 = 0 the following are satisfied:
(1) The ruled surface is a flat surface if the base curve is general helix with t{s) = (^Jk(s).
(2) The ruled surface is Il-minimal surface if the base curve is
general helix with t(s) = + ) k(s).
a X\ j
Corollary 3.5. At the point (s,0), in the ruled surface (\3) with x2 = 0 the following statements are equivalent:
(1) The ruled surface is a minimal surface.
(2) The ruled surface is II-flat surface.
(3) The base curve is general helix with t(s) = \ ^ ^ k(s).
Case 3.3. At v3 = 0, the ruled surface (13) has the following:
K=-A H=-\^
K =
x2
2X\X2T3 + KT'
2x\ t2
Kg = K, Kn = 0, Tg = 0.
Hrr =
x2(2 tk' kT) x\(2k2 -\- x\t2)t
v3 t2
(34)
Corollary 3.6. At the point (s,0), the ruled surface (\3) with x3 = 0 is:
K= -t1
H=
X3K
Kii= - [x3 {x\K2 + T2) + X2t'] ,
Hn = \2x2(2tk' kt') x3k(2x22k2 + 3t2)] ,
Kg = X2K, Kn X3K, Tg = X2X3K2.
(32)
Corollary 3.3. At the point (s,0), the ruled surface (\3) with Xj = 0 is:
(1) Flat surface if the base curve is a plane curve.
(2) Minimal surface if the base curve is straight line.
(3) Il-minimal surface if the base curve has the following characterization
2x2(2tk' kt') x3k(2x22k2 + 3t2) = 0.
(4) II-Flat surface if the base curve has the following characterization
f = (x^K2 + T2).
X2
Case 3.2. At v2 = 0, the ruled surface (13) has the following:
(1) Flat surface if the base curve is a plane curve.
(2) Minimal surface if the base curve is a plane curve.
(3) IFflat surface if the base curve has the intrinsic equations
k k(s) and t = ^ ,
VC!- 4x^fw)
where c2 is an arbitrary constant.
(4) IFminimal surface if the base curve has the intrinsic equations
k = k(s) and t =
2/ \ f K(s)ds
k (s) e x2 J w
\jc2 + 2x\x2 f k3(s) e x2 fK^dsds
where c2 is an arbitrary constant.
Case 3.4. At xx = x2 = 0 and x3 = 1, the ruled surface (13) at the point (s,0), has the following:
K=-z2, H = 3H = 3Kn = - (f),
\2J (35)
Kg = 0, Kn = K, Tg = 0.
K= Hn =
H=Kn =
X\K
X3
1 (x\ \ X\T
- 4 + 3 )k +
2 \xj J jc3
1
2
Kg = 0,
-1 )K
Kn = K,
% = 0.
(33)
Corollary 3.7. At the point (s,0), the ruled surface (13) with Xj = x2 = 0 and x3 = 1 is flat if the base curve is a plane curve.
Corollary 3.8. At the point (s,0), the ruled surface (\3) with Xj = x2 = 0 and x3 = 1, the following statements are equivalent:
289
(1) The ruled surface is minimal surface.
(2) The ruled surface is Il-minimal surface.
(3) The ruled surface is II-flat surface.
(4) The base curve is a straight line.
Case 3.5. At x\ = x3 = 0 and x2 = 1, the ruled surface (13) has the following:
K=-t2, H = 0,
K
Hu
2xk' kx' 2^
Kg = K, K = 0, Xg = 0.
(36)
Corollary 3.9. At the point (s,0), the ruled surface (\3) with xl = Xj = 0 and x2 = / is flat if the base curve is a plane curve.
Corollary 3.10. At the point (s,0), the ruled surface (\3) with X] = x3 = 0 and x2 = 1 is minimal surface.
Corollary 3.11. At the point (s,0), the ruled surface (13) with X] = x3 = 0 and x2 = 1 is II-flat surface if the base curve has a constant torsion.
Corollary 3.12. At the point (s,0), the ruled surface (\3) with X] = x3 = 0 and x2 = 1 is Il-minimal surface if the intrinsic equations of the base curve are:
k = k(s) and t = c3 k2(s), where c3 is an arbitrary constant.
Case 3.6. At x2 = x3 = 0 and x\ = 1, the ruled surface (13) has the following:
4.1. Ruled surfaces generated by general helices
Theorem 4.1. [\4]:The position vector c of general helix is expressed in the natural representation form as follows'.
c (s) = Vln2
,m^j ds,
(38)
where m = , n = cos[</>] and f is the angle between the
fixed straight line e3 (axis of a general helix) and the tangent vector of the curve c.
From the above theorem we have
ei (s) = fl-ri2 (cos [fl + m2 f k(s) ds], sin [V1 + m2 J k(s) ds], m), e2 (s) = ( sin [a/1 +m2 J k(s) ds\, cos [f\ +m2 J k(s) ds], 0), e3(s) = ncos [V l + m2 J k(s) ds], rcsin [f\ +m2 f ic(s)ds],y/l -n2^.
(39)
Then the position vector T(s, v) = (Wi, T2, ^3) of the ruled surfaces (13) generated by the general helix takes the following form:
/ (cos ^ + m2 J k(s)ds|, sin j^vT+m2 J k(s)dsJ
T{ = T2 = t3 =
1
_ 1 _ j
a/ 1+m2
[/cos[0]^ + v[(xi rax3)cos[<9] f\ +m2x2sin[0]]], [/sin[0]<is + v[(xi mx3) sin[0] + f\ +m2x2 cos[0]]], [ms+vfnx 1 +x3)],
(40)
where 0 = + m2 f k(s) ds.
Here, we introduced the position vector of ruled surfaces generated by some special cases of general helices:
K= 0,
Kg = K, Kn =0, Tg 0.
(37)
Case (1) In this case we take a circular helix (the curvature and torsion are constants) with the intrinsic equations
Corollary 3.13. The ruled surface (13J with x2 = x3 = 0 and Xf = 1 is a flat (developable) surface.
Corollary 3.14. The ruled surface (\3) with x2 = x3 = 0 and X] = 1 is minimal if the base curve is a plane curve.
It is worth noting that the second mean curvature and second Gaussian curvature are defined only on the non-developable surfaces.
Remark 3.15. On the ruled surface (13) with x2 = x3 = 0 and Xi = 1 we have Wsa Wv = vkg3. The normal vector on this surface is U = e3. While, at the point (s, 0), the normal vector is not defined because Ws a Wv = 0. Therefore, all curvatures K, H, HIh KIh Kg, Kn and zg are not defined at the point (s, 0).
k(s) = k and t(s) = m k.
Then the components of the position vector of the ruled surfaces generated by circular helix are:
^ ^(TT^) [t1 - (! + m2)x2Kv] sin [VYTn?Ks\
+s/\ + m2(x 1 mx3)KVcos [vT+ m2Ks]],
^2 = ^1^2) [[(1 + m1)x1KV - 1] cos [V1 + m2Ks\ (41)
+a/1 + m2(x 1 mxf)KV sin [fl + m2Ks]],
T,=
[ms + v(mx 1 + xf)].
Case (2) In this case we take a general helix with the intrinsic equations given by
4. Ruled surfaces generated by some special curves
In this section, we consider ruled surfaces generated by some important special curves such as general helices and slant helices.
k{s) =
and
. , m a T(S)=,
where a is an arbitrary constant. Then the components of the position vector of the ruled surface take the form:
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₯1 =
7=? [(l#+(x>cos[0] + (t^t *2v) sin[0]],
V
=Tfc [G^+(X1 mxfisin[0] fe1 X2V) cos[0]l
p3=
[ms + v(mx i + x3)],
where b = a\] 1 + m2 and 0 = 6Log[y|.
(42)
Case (3) In this case we take a spherical general helix with the intrinsic equations are [24,25]:
k(s) =
Vi -}
and t (s)
VT -1
where a is an arbitrary constant. The components of the position vector of the ruled surface can be written as:
'!'i =is[(*i -mxi)y-cosl0] + ~x*v] sin[0]>
'Pi = i [(*i - rnx3)V - a,(1+^)_>i] sin[0] - [/(^_^ - *2v] cos[0], k W3 =^[ms + v(mxi + x3)],
(43)
where 0 =~n sin-1 [ms],
4.2. Ruled surfaces generated by slant helices
Theorem 4.2. [\5]:The position vector c = (cfis), c2(s), c3(s)) of a slant helix is computed in the natural representation form:
{ci(j) = ^ / [/ k(s) cos [~ arcsin (m f k(s) ds)] ds] ds, c2(s) =% f [f k(s) sin [f arcsin (m f k(s) ds)] ds] ds, (44)
c3(V = n f [f K(s)ds] ds,
w/zere m = y==, n = cos/</>] and (j) is the angle between the fixed straight line (axis of a slant helix) and the principal normal vector of the curve c.
From the above theorem we can compute the tangent ei = (en(s), en(s), eu(s)), the normal e2 = (e2\(s),e22(s), e23(s)) and the binormal e3 = (e3i(s), e32(s), ^33^)) as the following:
{en (s) = % f k(s) cos [f arcsin(m f x(s)ds)] ds, e\2(s) = m I Vs) s^n £ arcsin(m J K(s)ds)] ds, (45)
en(s) = n[fK(s)ds],
(e2i(s) = % cos [f arcsin(m/k(s)ds)], e22(s) = % sin g arcsin(m J k(s) ds)], (46)
^23 fa) = n,
r e3ifa) = ^ [f k(s) sin [f arcsin(m J K(s)ds)] ds
(Jic(s)ds) sin [I arcsin (m Jfcfa)^)]],
< e32 (*)=£[(/ K W cos [i arcsin (w / k(s) fife) ] (47)
f k(s) cos [f arcsin(m J zc(.s) <A)] ds]
k en(s) = %\fi^rr2[f2fdf.
Then the position vector W(s, v) = (Fi, W2, ^3) of the ruled surface (13) generated by the slant helix takes the following form:
W\ =^\/[/ k(s) cos[<P]ds]ds + v (^(x2 Xi@ mx3V \ 02)cos[<P] +f\ +m2 Vl 02 x30s) sin «)]
< XP2=V\^/[/k(s) sin[0]ds]ds-\- v([x2 mx\0 rax3Vl 02) sin[(P]
f\ +m2(^x\Vl 0~ x20^j cos 1*1)] ■
^3 =m\f 0dsJrv(x\0 + mx2+x-if\ - 02)j,
(48)
where 0 = m j k(s) ds and 0 = \ arcsin[0].
In what follows, we presented the position vector of some important slant helices such as Salkowski, antiSalkowski, spherical slant helix.
Case (1) In this case, we take a Salkowski curve [26,27] whose intrinsic equations are: m s
k = 1,
Vl -1
(49)
The explicit parametric representation of such curve can be written as follows:
[ 'AiM =4 [lsJrC0S[(2«+1)4 +|prcos[(2n l)r] 2cos[r]],
| <A2 M = t, [frrsin [(2w + 1) it\ - ^ sin [(2n - 1) it\ - 2:sin [t] ],
{'l'i(t) = -4^cos[2nt],
(50)
where t = f arcsin (ms).
Case (2) In this case, we take an anti-Salkowski curve [26,27] with its intrinsic equations are: m s
Vl m2 s2
t = 1.
(51)
This curve has the following explicit parametric representation:
Ai M = L [iirrsin K2n +11f] + Shsin K2w -1)1- 2n sin M] >
' *A2 W = tn \pTncos [(1 + 2«) r] - rS cos [(1 - 2«) t] + 2n cos[/]],
^ *A3(0 = 4^2 (2n/ sin[2n^]),
(52)
where t = - arcsin(m0) and 6 = m
n ' ' m
Case (3) In this case, we take a circular slant helix [24] which has intrinsic equations are:
k = cosfi s], t = sin[p s], (53)
m m
The natural representation of such curve is in the following form:
r lAi (i) = - ^ [(1 + n1) cos{n s] cos[y + 2n sin[/x s] sin[y ],
| lA2(«) = [(! + »2) cos[i ■f] sin[y - 2n sin[/i 5] cos[y],
( ^3(5) = --JL- C0s[/i i].
(54)
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Figure 2 Some ruled surfaces generated by circular helices.
The above curve is a geodesic of the tangent developable of a general helix [13].
In the following remarks, we will illustrate in what values the graph plotted.
Remark 4.3. It is worth noting that:
(1) The ruled surfaces generated by circular general helices are illustrated by graph in Figs. 1 and 2.
(2) The ruled surfaces generated by spherical general helices are illustrated by graph in Figs. 3 and 4.
(3) The ruled surfaces generated by Salkowski curves are illustrated by graph in Figs. 5 and 6.
(4) The ruled surfaces generated by circular slant helix is illustrated by graph in Figs. 7 and 8.
Remark 4.4. We will take the symbols (F, M and R) that means (Feft, Middle and Right) in the graph, respectively.
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Figure 3 Some ruled surfaces generated by spherical general helices.
Figure 5 Some ruled surfaces generated by Salkowski curves.
Ruled surfaces generated by some special curves in Euclidean 3-Space
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Figure 6 Some ruled surfaces generated by Salkowski curves.
50
Figure 7
Some ruled surfaces generated by circular slant helices.
Fig. 1: L: (k = m = 1, x\ = x2 = 0, x3 = 1), M: (k = 1, m = 3, x\ = x3 = 0, x2 = 1), R: (k = \/3, m = 2,x2 =
*3 = 0,Xi = 1).
Fig. 2: F: (k = |,m = 2,xi =x2 = x3 = ^), M:
(k; = 2, m = 1,jci = X2 = \ ,x3 = R: (k = 2, w = |,xi =
72X2 = = 7s)'
Figure 8
Some ruled surfaces generated by circular slant helices.
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Fig. 3: L: {a = 2, m = 1, jcj = 0,x2 = x3 == ^), M:
(a = \,m = §,x2 = 0,xi = ^,x3 = ^), R: (a = 3,m=l,
X3 = 0, X] = ^,x2 = i)
Fig. 4: L: (a = f, w = 1,jci = ^,x2 = ^§,x3 = |), M:
(a = m = 2,xi =x3 = |,x2 = ^), R: (a = |,m = |,X] =
Y*2 = Y*3 = Y'
Fig. 5: L: (m = \,x\ = 0,x2 = x3 = ^), M: (m = 3,*2 = 0, *1 = j,x3 = ^), R: (« = 1,*3 = 0,X! = §,x2 = ^).
Fig. 6: L: (m = 1,xi = x2 = x3 = ^), M: (ra = ~,xi = x2=i,x3=i), R: (m = 2,Xl=±,x2 = ±,x3=±).
Fig. 7: L: (ji = 5, m = 1, xi = x2 = 0, x3 = 1), M:
(ji = 3, m = 1, Xi = x3 = 0, x2 = 1), R: (/i = 3, m = 1, x2 = x3 = 0, X] = 1).
Fig. 8: L: (ju = 10,m = 2,xi = x2 = x3 = ^), M: (^ = ^, W = -j^,xi =x2 = |,x3 =^j), R: (n= 12,m = 3,xi =^,
X2=76X3=^).
References
[1] O. Gursoy, On the integral invariants of a closed ruled surface, J. Geom. 39 (1990) 80-91.
[2] O. Kose, Contribution to the theory of integral invariants of a closed ruled surface, Mech. Mach. Theory 32 (1997) 261-277.
[3] A. Turgut, H.H. Hacisalihoglu, Spacelike ruled surfaces in the Minkowski 3-space, Commun. Fac. Sci. Univ. Ank. Ser. Math. Stat. 46 (1997) 83-91.
[4] A. Turgut, H.H. Hacisalihoglu, Time-like ruled surfaces in the Minkowski 3-space, Far East J. Math. Sci. 5 (1) (1997) 83-90.
[5] F. Dillen, W. Sodsiri, Ruled surfaces of Weingarten type in Minkowski 3-space, J. Geom. 83 (2005) 10-21.
[6] Y.H. Kim, W.D. Yoon, Classification of ruled surfaces in Minkowki 3-space, J. Geom. Phys. 49 (2004) 89-100.
[7] A. Kucuk, On the developable timelike trajectory ruled surfaces in Lorentz 3-space E\, Appl. Math. Comput. 157 (2004) 483489.
[8] H.H. Ugurlu, M. Onder, instantaneous rotation vectors of skew timelike ruled surfaces in Minkowski 3-space, VI, in: Geometry Symposium, 01-04 July, 2008, Bursa, Turkey.
[9] M. Barros, General helices and a theorem of Lancret, Proc. Am. Math. Soc. 125 (1997) 1503-1509.
[10] K. Arslan, Y. Celik, R. Deszcz, C. Ozgur, Submanifolds all of whose normal sections are W-curves, Far East J. Math. Sci. 5 (1997) 537-544.
[11] Y.B. Chen, D.S. Kim, Y.H. Kim, New characterizations of Wcurves, Publ. Math. Debrecen 69 (2006) 457-472.
[12] D.J. Struik, Lectures on Classical Differential Geometry, Addison-Wesley Publishing Company, Inc., 1961.
[13] S. Izumiya, N. Takeuchi, New special curves and developable surfaces, Turk. J. Math. 28 (2004) 531-537.
[14] A.T. Ali, Position vectors of general helices in Euclidean 3space, Bull. Math. Anal. Appl. 3 (2) (2010) 198-205.
[15] A.T. Ah, Position vectors of slant helices in Euclidean 3-space, J. Egyptian Math. Soc. 20 (2012) 1-6.
[16] C.E. Weatherburn, Differential Geometry of Three Dimensions, Syndic of Cambridge University press, 1981.
[17] T. Yilmaz, E. Nejat, A study on ruled surface in Euclidean 3space, J. Dyn. Syst. Geom. Theor. 18 (1) (2010) 49-57.
[18] B. ONeill, Sem-Riemannian Geometry, Academic press, New York, 1983.
[19] C. Baikoussis, T. Koufogiorgos, On the inner curvature of the second fundamental form of helicoidal surfaces, Arch. Math. 68 (2) (1997) 169-176.
[20] S. Verpoort, The Geometry of the Second Fundamental Form: Curvature Properties and Variational Aspects, Ph.D. Thesis, Katholieke Universiteit Leuven, Belgium, 2008.
[21] O. Bektas, S. Yuce, Special Smarandache curves according to Darboux frame in E3, (2012), ArXiv:1203.4830vl [math.GM].
[22] T. Yilmaz, K.K. Murat, On the geometry of the first and second fundamental forms of canal surfaces, 2011, ArXiv:l 106.3177vl (math.DG).
[23] P. Alegre, K. Arslan, A. Carriazo, C. Murathan, G. Ozturk, Some special types of developable ruled surfaces, Hacet. J. Math. Stat. 39 (2010) 319-325.
[24] J.H. Choi, Y.H. Kim, Associated curves of a Frenet curve and their applications, Appl. Math. Comput. 218 (2012) 9116-9124.
[25] J. Monterde, Curves with constant curvature ratios, Bull. Mexican Math. Soc. 13 (2007) 177-186.
[26] J. Monterde, Salkowski curves rvisted: a family of curves with constant curvature and non-constant torsion, Comput. Aided Geomet. Des. 26 (2009) 271-278.
[27] E. Salkowski, Zur Transformation von Raumkurven, Mathematische Annalen 66 (4) (1909) 517-557.